If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X=192
We move all terms to the left:
X^2+X-(192)=0
a = 1; b = 1; c = -192;
Δ = b2-4ac
Δ = 12-4·1·(-192)
Δ = 769
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{769}}{2*1}=\frac{-1-\sqrt{769}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{769}}{2*1}=\frac{-1+\sqrt{769}}{2} $
| z/9+2=-2 | | x²-3x+9=0,x | | 127=7x+8 | | x²-3x+9=0 | | 5(x=7)=7+x | | (X/20)-(7/5)=(x/5)+1 | | 6k-2k(k-5)=-4+2k | | 5.7*e+11.8=1.3*e+29.4 | | 11u/9=16/9 | | X^2=11x-2 | | 5y-7=2y-43 | | z-3.2=0.6 | | -8(x-1)=-400 | | -8m-29=3(6m-1) | | 166=68-y | | X+2+3x-8=5x-12 | | t+-6=-9 | | -6(5x-12)=57-5(4x+13) | | m/20=7/10 | | 6(5-t)-(3-4t)=24 | | -x+232=17 | | 5a+9=3a+5*9 | | 11(z+2)-3(z-2)=3(z-1)+4(z-1) | | -9p–6p+15p–-12p=-12 | | h(0)=2/3(0)-1 | | 6-3x+x=16 | | 113x+2=4x+38 | | 3u–u=14 | | (2x-1)/(x/3+1)=3/4 | | 16=-2(1-x)+3(x+1) | | 24x^2+11=-33x | | 3=-6x-5=-2x+7 |